Glass Substrate with High Density Electrical Feedthroughs

نویسندگان

  • Shuji Tanaka
  • Satoshi Fujimoto
  • Osamu Ito
  • Seong-Hun Choe
  • Masayoshi Esashi
چکیده

This paper reports a novel method to produce high density feedthrough glass wafers with sufficient thickness for the packaging and interconnection of high density array micro electromechanical systems (MEMSs). Pyrex glass wafers with thin film metal lines on the surface are stacked and bonded with each other using phenyl methyl siloxane-based adhesive. The stacked glass wafer block is then sliced using a wire saw as the slicing surfaces vertically cross the adhesive bonding interfaces. Prototyped feedthrough glass wafers were subjected to anodic bonding to a silicon wafer with diaphragms. The anodic bonding was successful, but hermetic sealing was not achieved. Also, the bending of the bonded sample is large in the direction of stacking of the original glass wafers. The causes of these problems were investigated, and the solution was proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

Simulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm

This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...

متن کامل

Cadmium Oxide Thin Films Deposited by a Simplified Spray Pyrolysis Technique for Optoelectronic Applications

Cadmium oxide thin films were fabricated on glass substrates by a simplified and low cost spray pyrolysis technique at different substrate temperatures. The X-ray diffraction study showed that irrespective of substrate temperature all the films exhibits a preferential orientation along the (1 1 1) plane. The values of crystallite size were found to be in the range 20.72 – 29.6 nm. The perce...

متن کامل

Electrical Resistivity Measurement of the Molten Cordierite Glass Using Two-wire method

Electrical resistivity (ER) is a main parameter in the melting processes of glasses. However, its measurement is difficult at high temperatures. In this study the electrical resistivity of different cordierite glass samples in the molten state was measured in the temperature range of 1100˚C to 1550 ˚C using the two-wire method. It was attempted to decrease the electrical resistivity of the glas...

متن کامل

Fabrication of Copper and Iron Nano/Micro Structures on Semiconducting Substrate and Their Electrical Characterization

In this paper, we have studied the electrical properties of the randomly distributed metallic (Co and Fe) nano/ micro wires on Silicon substrate. Deposition was carried out potentiostatically into the pores of the track-etch polycarbonate membrane spin coated onto the Si substrate. Spin coated films were irradiated with 150MeV Ni (+11) ions at a fluence of 8E7 ions/cm2, followed by UV irradiati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006